Elliptic solutions for higher order KdV equations
نویسندگان
چکیده
منابع مشابه
Exact and Numerical Solutions for Nonlinear Higher Order Modified KdV Equations by Using Variational Iteration Method
This paper investigates the implementation of Variational Iteration Method (VIM) to practical and higher order nonlinear equations in kind of Korteweg-de-Vries (KdV) equation. The obtained solutions from thirdand fourth-order modified KdV are compared with the exact and Homotopy Perturbation Method (HPM) solutions. Results illustrate the efficiency and capability of VIM to solve high order nonl...
متن کاملSingular Sets of Higher Order Elliptic Equations
The implicit function theorem implies that the zero set of a smooth function, the set where the function vanishes, is a smooth hypersurface away from the critical zero set. Hence to study zero sets it is important to understand the structure of the critical zero sets. For solutions of the second order elliptic equations the critical zero sets represent the singular parts of zero sets. They have...
متن کاملElliptic Equations of Higher Stochastic Order
This paper discusses analytical and numerical issues related to elliptic equations with random coefficients which are generally nonlinear functions of white noise. Singularity issues are avoided by using the Itô-Skorohod calculus to interpret the interactions between the coefficients and the solution. The solution is constructed by means of theWiener Chaos (Cameron-Martin) expansions. The exist...
متن کاملOn the Hierarchies of Higher Order Mkdv and Kdv Equations
The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces b H s (R) defined by the norm ‖v0‖ b Hr s (R) := ‖〈ξ〉 b v0‖Lr′ ξ , 〈ξ〉 = (1 + ξ) 1 2 , 1 r + 1 r = 1. Local well-posedness for the jth equation is shown in the parameter range 2 ≥ r > 1, s ≥ 2j−1 2r . The proof uses an appropriate variant of the Fourier restriction norm method. A coun...
متن کاملHigher-Order Equations of the KdV Type are Integrable
We show that a nonlinear equation that represents third-order approximation of long wavelength, small amplitude waves of inviscid and incompressible fluids is integrable for a particular choice of its parameters, since in this case it is equivalent with an integrable equation which has recently appeared in the literature. We also discuss the integrability of both secondand third-order approxima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics Communications
سال: 2020
ISSN: 2399-6528
DOI: 10.1088/2399-6528/ab88df